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A mathemat i ca l  mode l  o f  mass  t ransfer  processes  dur ing au toca ta ly t ic  d issolut ion of  metall ic coppe r  
in oxygen-conta in ing  a m m o n i a  solut ions  using the ro ta t ing  disc technique is presented.  The  mode l  is 
based  on the equa t ions  o f  s teady state convect ive  diffusion with volumetr ic  mass  genera t ion  terms and 
b o u n d a r y  condi t ions  o f  the third kind,  in more  general ized form,  at the disc surface and o f  the first 
k ind in the bulk  solut ion.  The  b o u n d a r y  value p rob l e m was  solved numerica l ly  using the finite 
difference m e t h o d  with variable  mesh spacing. C o m p a r i s o n  o f  calculated and exper imental  results 
indicates tha t  the mode l  quant i ta t ive ly  represents  the measurements .  The  rate o f  the react ion 
Cu(II)  + Cu  ~ 2Cu(I)  de termines  the overall  rate o f  the process.  
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rotating disc surface area, (cm 2) t 
dimensionless constant, B = k 3 c~ i At 
concentration of species i, c~ = q(y) v 
(tool cm-  3 ) V 
concentration of species i in the bulk of  W~, 14/2 
solution, c~ = c~ (molcm 3) 
concentration of species i at the disc surface, Xl 
Ci,o = ci (y  = 0) (molcm -3) y 
concentration ratio, Ci = ei/c ~ Ci = Ci(~) 
concentration ratio (in the bulk of solution), Ay 

= c717., 
concentration ratio (at the disc surface), 

q , o  = q,0/c ~ 
molecular diffusivity of  species i (cm 2 s 1) 
space increment, h = A~_ = (o>/v)l/2Ay, V 
dimensionless v 
mass flux of species i (molcm-:  s 1) #j 
first-order reaction rate constant (cms ~ or o9 
cm 3 mol-1 s I) 

diffusivity ratio, Ki,.j --- Di/Dj, dimensionless 
number of space increments A~ 
total number of  moles of  Cu(II) entering the 
bulk of solution referred to the unit disc 
surface area (mol cm -2) 

1. Introduction 

An experimental study of spontaneous copper dis- 
solution in oxygen-containing aqueous ammonia 
solutions carried out by Zembura and Maraszewska 
[1] shows that the sequence of  reactions is as follows: 

Cu + 4NH3 + �89 + H20  , Cu(NH3)~ + + 2OH-  

(I) 

0021-891x/90 $03.00 + .12 �9 1990 Chapman and Hall Ltd. 

rate of  production of  species i by the chemi- 
cal reaction (tool cm ~ s- 1 ) 
Schmidt number, Sq = v~/Di 
time, (s) 
time increment (s) 
fluid velocity vector v = (u, v, w) (cm s -1) 
volume of solution (era 3) 
dimensionless group, W~ = (/(3,2/D~) 
(vlco) '1~, W2 = (KI.21D2)(vI~) '12 
coordinates, l = 1, 2, 3 
axial coordinate (perpendicular to the disc 
surface) 
space increment (cm) 

Greek letters 

nabla operator 
kinematic viscosity of  solution (cm ~- s- 1 ) 
stoichiometric coefficients 
disc angular velocity (s -1) 
dimensionless axial coordinate, 
(,olv) llay 
dimensionless space increment, 

Cu + Cu(NH3)] + ~ 2Cu(NH3)~ + (2) 

2Cu(NH3)] + �89 + 4NFI3 + H20  

-----> 2Cu(NH3)42+ + 2 O H -  (3) 

Reaction 1 proceeds in the diffusion-controlled regime 
[1] whereas Reaction 2, particularly at high concen- 
trations of  Cu(II) complexes, is very likely to occur in 
the mixed regime [2]. Because of  the absence of  Cu(I) 
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complexes in the solution, Reaction 3 can be assumed 
to be very fast in comparison with Reaction 2. 
Therefore, the rate of  accumulation of  Cu(II) com- 
plexes in the bulk solution is the sum of the rates of 
Reactions 1 and 2. The substrate of Reaction 2, 
Cu(II), is continuously reproduced in Reaction 3, 
making the dissolution process autocatalytic. The 
main purpose of  this study is to formulate and solve 
the mathematical model for the mass transfer pro- 
cesses due to the reactions described above. Making 
use of the rotating disc technique, the mathematical 
model proposed by Levich [3, 4] can be utilized as the 
base for more rigorous analysis. 

2 .  M a s s  t r a n s f e r  m o d e l  

Generally, the diffusion and convection mass transfer 
processes can be described by a set of partial differ- 
ential equations: 

aci 
a t  + (v" V)ci = V(Di 'Vc0 + ?i (4) 

where ci = ci(xi, t), (l = 1, 2, 3), r i = ri(ci, cj, t), 
Di = Oi(ci, q ) , ( i , j  = 1 , 2 , . . .  , r ) , a n d v  = ( u , v , w ) .  
Based on the analysis of  experimental data [1] the 
Equations 4 can be significantly simplifed by assump- 
tion that the concentration of all species, i, changes 
very slowly with time so that acdat  = 0. This means 
that the process can be considered as quasi-steady 
state. To simplify the problem further we assume that 
the Reaction 3 is first order and irreversible for dis- 

solved oxygen and Cu(I) complexes and that these 
species are at low concentration in comparison with 
ammonia and water. Additionally, the molecular 
diffusivity of all species, i, in the liquid, D~, can be 
assumed independent of  concentration and mass 
transfer processes can be considered as unidimen- 
sional. Under such assumptions, based on the Levich 
model [3], the equations of convective diffusion take 
the simplifed form: 

d 2 C i dci 
Oi ~ ~-(ly ~ -- V-~y q- # i k 3 c l c 2  = 0 (for i = 1, 2, 3) 

(5) 
where ci = ci(y) and (D i, k3) = constant. 
The axial component of  the fluid velocity can be cal- 
culated using the analytical solution obtained by 
Cochran [5]. Indices i = 1, 2, 3 refer to oxygen in 
Reaction 1, Cu(I) complexes in Reaction 2 and Cu(II) 
complexes in Reaction 3, respectively. Stoichiometric 
coefficients #i are: #1 - �88 #2 = - 1 and #3 = 1. 

Assuming, further, that the Reactions 1 and 2 are 
also first order and irreversible for oxygen and Cu(II) 
complexes, the boundary conditions at the disc sur- 
face, for y = 0, are expressed: 

de1 o Dl~v-y = klCl, 0 (6) 

D2 dc2 = -2k2c3,0 (7) 
dy 0 

D3 dc  3 = _ 2 D  1 dcl o dy 0 ~ -t- k2c3, 0 (8) 

In the bulk of solution the asymptotic boundary con- 
ditions, for y ~ o% are expressed: 

el = c ~ (9), 

c2 = 0 (10) 

r ~--- C~. (11) 

Introducing dimensionless variables, the boundary 
value problem (Equations 5-11) can be rewitten as 
mass transfer equations in the form: 

d2Ct S c i H ( {  ) dCi d~ 2 - ~  -'l- #1BSciCIC2 = O, 

Ci = C~(4), (i = 1 , 2 , 3 )  (12) 

where, according to the Cochran solution [5], 

H(r = -0 .51  42 + 0.333 4 3 - -  0.103 4 4 -~- . . . 

with boundary conditions for ~ = 0: 

dC1 0 d~ = W1 C1,0 

dC2 =- W2C2o 
d~ o 

dC3 dCl 
K 3 2 - -  = 2K~2 - 

' d 4  o ' d ~  o 

and for 4 ~ oo: 

(13) 

(14) 

The flux of  copper entering the solution from the 
disc surface, 4 = 0, is the sum of the fluxes of Cu(I) 
and Cu(II) complexes and, in the presence of very fast 
Reaction 3 can be expressed by: 

dc2 dc3 ~ (19) 
Jcu = Jcu(n) = - D2 dy o + D3 dy oJ 

or in a dimensionless form, for ~ = 0: 

dC2 ~ dC3 ~ (o/#),/2C~ (20) 
Jc.(n) - D 2 -~ -  + D3 d{ 0J 

The solution of the boundary value problem 
formulated above allows calculation of the values of  
Jcu(n). To verify the model these values are compared 
with the fluxes of  Cu(II) calculated from experimental 
data using the mass balance equation for Cu(II) com- 
plexes in the bulk solution which takes the form 

V dc ~ 
Jcu(m -- A dt (21) 

The data from Zembura and Maraszewska's experi- 
mental study [1], given in the form of  no~(m = f(t), 
have been used in the calculations, with the initial 
condition c~ = O) = O. 

C ~ = 1 ( 1 6 )  

C2 ~ = 0 (17) 

C ~ = c~ ~ (18) 

W2 C2,0 (15) 
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3. Solution procedure 

The non-linear form of the convective diffusion 
Equations 5 means that an analytical solution of the 
boundary value problem (Equations 12-18) cannot  be 
obtained and a numerical method must be applied. 
The simple geometry of the system and the unidimen- 
sional form of the model allow the finite difference 
method to be employed. To improve the accuracy of  
calculated results a finite difference formulation with 
variable mesh spacing has been used [6]. 

Taking into consideration that the most significant 
changes of  concentration occur in the vicinity of  the 
disc surface the lengths of  space increments, A~ 
increased towards the bulk of solution. To ensure 
numerical stability of  the finite difference scheme the 
forward analog for the first derivative and second- 
order correct for the second derivative have been used. 
The system of nonlinear algebraic equations has been 
solved by the modified Newton method. The value of  
the dimensionless coordinate q5 M was chosen in such a 
way that the condition 

' ~ ? ~ -  ' I < 10 4 (22) 

has to be satisfied in order to ensure the desired 
accuracy of numerical solution. Condition 22 was 
continuously examined during calculations and, when 
not satisifed, the solution domain was enlarged. 

On the basis of  the discrete distributions of  Cu(I) 
and Cu(II) concentrations the molar  flux of copper 
from the disc surface to the bulk solution was cal- 
culated according to Equation 20, in which the first 
derivatives were again approximated by forward finite 
difference analogs. Then utilizing an explicit scheme 
for Equation 21, the time concentration changes of  c o 
were calculated from the equation 

0 0 
C3,t+At = Cs, t + (A/V)jc.ooAt (23) 

with initial condition c](t = O) = O. 
The boundary value problem (Equations 12-18) was 
solved for different time levels. 

4. Data for calculations 

To solve the problem we assumed that the diffusion 
coefficient of  dissolved oxygen in 1.0M ammonia  
solution does not differ significantly from its value in 
0.1M H 2 S O  4 being D~ = 1.74 x 10-Scm2s i [7]. 
The oxygen solubility in ammonia  solution was 
evaluated in the same manner  for 0.1 M H2 SO4 being 
equal to ct = 1.15 x 10 -6 m o l c m  -3 [8]. 

According to the data reported by Verkroost and 
co-workers [9] the polarographical diffusion coef- 
ficient for Cu(I) complexes was measured to be 
D2 = 1.5 x 10 s c m  2 S - 1 .  Data  can also be found in 
the literature [2, 9, 10, l l ]  to select diffusion coef- 
ficients for ammonia  Cu(II) complexes; the most 
probable value is D3 = (1 0 _+ 0.2) x 10 -5 cm 2 s -1, 
For our calculation the value O 3 = 1 .0  • 10  - s  c m  2 s -1 

was chosen. The kinematic viscosity of  1.0M 

ammonia  solution was assumed to be equal to that o f  
water, that is v = 8.5 x 10  -3  c m  2 s -1 . Thus, the 
following Schmidt numbers and diffusivity ratio 
values were calculated, Scl = v/D~ = 488.5, Sc2 = 
v/D 2 ~--- 566.7, S c  3 : v/D3 : 850.0 and K3.2 = 
D3/D 2 = 0.667, Ki.2 = DI/D2 = 1.16. The surface 
area of  the disc was 4.15 cm 2 and the volume of  ammo-  
nia solution V -- 500 cm 3. 

5. Discussion of calculation results 

Based on the numerical solution, the value of  oxygen 
limiting flux Jo2 1 = 2-JCu(ll) in the oxygen-saturated 
ammonia  solution under 0.1 MPa pressure for a disc 
rotation speed of 25 r.p.s was calculated, (assuming 
k~ = 100, k2 = k3 = 0 and co = 2~f) and its value 
was 1.22 x 10 -s m o l c m  -2 s -~ . This was less than the 
value obtained from Levich's analytical formula [3] 

Jo, = 0.62DZo/~v-'/6co'/2c~ (24) 

which gives 1.35 x 10-Smolcm 2s - l .  
The difference can be explained* if the simplifications 
of  the Levich model are considered. To examine the 
influence of the length of the space increments, A{, on 
the calculated results of  the oxygen limiting flux, two 
different mesh spacings were used with hi = 10 -2, 
Ml = 21 and h2 = 10 -3, M2 = 50, for which the: oxy- 
gen limiting flux values were 1.22 x 10 8 molcm 2 $-I 

and 1.24 x 10 -8motcm 2 s-1 respectively. Because 
this difference is less than the measurement error, the 
values of  h~ and M~ were used in further calculations. 

Based on the fact that Reaction 1, for copper dis- 
solution with oxygen depolarization is controlled by 
diffusion [1] of  oxygen, an inifinite value for k~ was 
assumed while k3 for Reaction 3 (homogeneous oxi- 
dation of Cu(I) complexes) were treated as selectable 
arbitrarily chosen variables. Their most  probable 
values were estimated as follows. Data  for calculated 
and measured results [1] were introduced into the 
computer  memory  as input data with corresponding 
time values as output  data. Values of  ncu<m were then 
calculated according to the numerical algorithm for 
different reaction rate constants,/<2 and k3, and a sum 
of squares of  differences between the measured and 
calculated values of  ncu(m was determined. The results 
are shown in Table 1 and, according to the least 
squares principle, the values of  k2 = 10 -2 cm s -~ and 
k 3 = 0.5 x 106cm 3mol -~s  -1 can be chosen as the 
most probable. In the experimental work S~dzimir 
and co-workers [2] obtained the value k2 = 2.7 x 
10 -2 cms  ~ for similar ammonia  solutions. 

Figure 1 demonstrates measured results (marked 
by points) and calculated results (continuous lines) for 
different reaction rate constant values, k2. Circles, 
squares and triangles present three measurement 
series and it can be seen that reproducibility is not 

* The  value of  oxygen l imi t ing  flux exper imenta l ly  measured  [12] by 
four-e lect ron ca thod ic  reduct ion  of  oxygen dissolved in 0.1 M 
oxygen-sa tu ra ted  a m m o n i a  so lu t ion  under  0.1 M P a  pressure for 
2 5 r . p . s w a s j o  2 = (1.5 • 0.2) x l0  - s m o l c m  - 2 s  - l ,  
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Fig. 1. Comparison of three series of experimental results (rep- 
resented by o,  n ,  zx) and calculated results (continuous lines) of 
dissolution of the rotating copper disc in oxygen-saturated 1.0 M 
ammonia solution, oxygen pressure 0.1 MPa ,  t empera tu re  25 _+ 
0 .2~  25 disc r.p.s, k I = 100. Curve  (1): k 2 = 0, k 3 - arbitrary. 
curves (2), (3), (4) and (5): k 2 = 5 x 10 3; 10-2, 3 x 10 .2 , 
1 0 2 c m s  1 respectively,  k 3 = 0.5 • 106cmmo1-1S  -1. 

good. However,  for reaction rate constants kl = 
102 c m s  -t (asymptotic value), k2 = 10 .2 c m s  -~ and 
k3 = 0.5 X 106 cm 3 mol-~ s ~ curve (3) seems to fit 
the measured data best. As mentioned earlier, the rate 
of  the autocatalytic process is controlled by the rate of  
Reaction 2, which means that the reaction rate con- 
stant value, k2, is most  important. This conclusion 
results directly from Fig. 2, in which the relationship 
between the sum of  fluxes Jcu(m from Reaction I and 

Jcu(m from Reaction 2 is presented. It can also be seen 
that for k2 = 0 we have Jc . (m = 2jo2 while Jcuo) = 0 

and for k 2 = 0 .1 ,  Jcuo) = 4jo2 while Jc~(m = 0. 

Measurements o f  copper dissolution carried out at 
short times, to about 1 000s,  shows that the flux 
Jcu(m -- 2J02 or slightly greater. This means that for 
time t = 0 we neglected the influence o f  Reaction 3 on 
the rate of  the overall process. 

Calculated results o f  dimensionless concentrations 
of  C~, C2 and C3 against dimensionless coordinate 
are presented in Fig. 3, from which the thickness of  the 
diffusion layer can be evaluated; its value is as high as 
10 .3 cm for all species i. 

Table 1. Sum of  squares o f  differences between the measured and 
calculated values o f  nc,(n.) 

k 2 X 103 (cms -1) k 3 X 10 -6 (cm3mol - I s  - l )  

0.5 1.5 4.5 13.5 40.5 

5.0 9.36 10.03 11.7 14.7 18.8 

10.0 1.12 1.40 2.19 3.97 6.76 

30.0 8.81 7.71 5.64 3.12 1.34 
50.0 18.40 16.70 13.50 9.35 5.85 
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Fig. 2. Dissolved copper flux, Jcu, against reaction rate constant, 
k 2 c m s  -1 for k I = 1 0 0 c m s  l, k 3 = 0.5 x 106cm3mol  -I  s 1, 
t = 0, B = 3.66 x 10 -3 . 

6. Conclusions 

Comparison of  the calculated results, based on the 
mathematical model proposed in this study, with 
measurements carried out by Zembura and Maras- 
zewska [1] shows that the process o f  autocatalytic 
copper dissolution in oxygen-containing ammonia  
solutions proceeds according to the equations: 

A(s ) + B , E (25) 

A(s) + E , D (26)  

D + B , E (27)  

16.0 
I 

Ccu(II) 
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12.0 / 
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.Y 
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40 
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0 0.2 0.4 0.6 0.8 
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Fig. 3. Results of calculations of concentration ratio distribution: 
C l - o x y g e n ,  C2-Cu( I  ) complexes ,  C3-Cu( I I  ) complexes for t = 
2.97 x 103s. k I = 1 0 0 c m s  -~, k 2 = 1 0 - 2 c m s  -1, k 3 = 0.5 x 
106cm 3 mol  I s  l ,  W l = 4.23 x 104, W e = 4.905 and  B = 
3.66 x I0 3. 
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where, in our  case, A(s) is metall ic copper  and  B, D, E 
are dissolved oxygen,  cuprous  and  cupric a m m o n i a  
complexes,  respectively. 

As ment ioned  earlier, substrate  E, in the hetero-  
geneous React ion  26, is cont inuous ly  reproduced  in a 
rapid homogeneous  react ion (27), mak ing  the overall  
process autocatalyt ic .  React ion  25 proceeds  at  a con- 
s tant  rate but  its influence on the accumula t ion  rate o f  
p roduc t  E in the bulk solut ion decreases with time. 
Based on the numerical  evaluat ion  o f  the react ion rate 
constants  k~, k2 and k3 we can state tha t  the rate o f  
React ion  26 controls  the rate o f  the process  o f  au to-  
catalytic copper  dissolution. Limited reproducibi l i ty  
of  exper imenta l  results means  tha t  the react ion rate 
cons tan t  value, k2, can only be evaluated as 
10 2 c m  s -  ~. Fur the r  analysis shows (see Fig. 2) that  if 
the value o f  k= were one order  o f  magn i tude  greater.  
React ion  25 could not  be identified in Z e m b u r a ' s  and 
Maraszewska ' s  exper iments  [1] and the scheme o f  the 
process would then be 

A(~) + B- - - -+  D 

D + B  , ; E  

Ats ) + E ~ D 

(28) 

(29) 

(30) 

andjo~0 > should be equal to 4j%, while in the case o f  the 
model  represented by Equat ions  25-27, Jcu(m = 2jo2 

which is exper imental ly  observed for shor t  dissolution 
t imes [lJ. 
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